
iSAQB®
Working Groups

Glossary of

Software
Architecture
Terminology

Edition 2022

iSAQB¨ Glossary of Software
Architecture Terminology

2022.1-EN-20221216

Table of Contents

Introduction . Ê1

Personal Comments . Ê1

Terms Can Be Referenced. Ê1

License . Ê2

Acknowledgements . Ê2

Contributing . Ê2

Terms . Ê3

A . Ê3

B . Ê9

C. Ê11

D. Ê17

E. Ê19

F . Ê20

G. Ê21

H. Ê22

I. Ê22

J . Ê24

K. Ê24

L . Ê25

M . Ê25

N. Ê27

O. Ê27

P. Ê28

Q. Ê31

R. Ê34

S. Ê36

T . Ê43

U. Ê45

V. Ê46

W . Ê46

X. Ê47

Y. Ê47

Z . Ê47

Translation Tables . Ê48

English to German . Ê48

German to English . Ê54

References and Resources . Ê60

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 iii

Appendix . Ê63

The iSAQB¨ e.ÊV. Association. Ê63

About the Authors . Ê64

About our Cause. Ê67

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 iv

Introduction

This book contains a glossary of software architecture terminology.

It can serve as a reference for preparation for the iSAQB¨ e.ÊV. examination Certified Professional for
Software Architecture - Foundation Level©.

Please be aware: This glossary is not intended to be a primer or course book on software architecture, but
just a collection of definitions and links to further information.

Furthermore, you find proposals for translations of the iSAQB¨ terminology, currently between English and
German (and vice-versa).

Finally, this book contains numerous references to books and other resources, many of which we quoted
in the definitions.

! This book is work in progress.

Errors or omissions can also be reported in our issue tracker on GitHub, where the authors maintain the
original sources for this book.

Personal Comments

Several of the terms contained in this book have been commented by one or several authors:

"
Comment (Gernot Starke)

Some terms might be especially important, or sometimes there are some subtle
aspects involved. Comments like these give a personal opinion and do not necessarily
reflect the iSAQB¨.

Terms Can Be Referenced

All terms in the glossary have unique URLs to the (free) online version of the book therefore they can be
universally referenced, both from online- and print documentation.

Our URL scheme is quite simple:

¥ The base URL is https://public.isaqb.org/ glossary/ glossary-en.html

¥ We just add the prefix #term- in front of the term to be referenced, then the term itself, with hyphens
("-") instead of blanks.

For example our description of the term software architecture can be referenced (hyperlinked) with
https://public.isaqb.org/ glossary/ glossary-en.html# term-software-architecture

Nearly all terms are hyperlinked with their full names, with very few examples that are referenced by their
(common) abbreviations, like UML or DDD.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 1

https://github.com/isaqb-org/glossary/issues
https://public.isaqb.org/glossary/glossary-en.html
https://public.isaqb.org/glossary/glossary-en.html
https://public.isaqb.org/glossary/glossary-en.html
https://public.isaqb.org/glossary/glossary-en.html
https://public.isaqb.org/glossary/glossary-en.html
https://public.isaqb.org/glossary/glossary-en.html#term-software-architecture
https://public.isaqb.org/glossary/glossary-en.html#term-software-architecture
https://public.isaqb.org/glossary/glossary-en.html#term-software-architecture
https://public.isaqb.org/glossary/glossary-en.html#term-software-architecture
https://public.isaqb.org/glossary/glossary-en.html#term-software-architecture
https://public.isaqb.org/glossary/glossary-en.html#term-software-architecture
https://public.isaqb.org/glossary/glossary-en.html#term-software-architecture

License

This book is licensed under a Creative Commons Attribution 4.0 International License. The following is
only a brief summary and no substitution for the real license.

The CC BY 4.0 license means that you might:

¥ Share Ñ copy and redistribute the material in any medium or format

¥ Adapt Ñ remix, transform, and build upon the material for any purpose, even commercially.

¥ The licensor cannot revoke these freedoms as long as you follow the license terms.

You must:

¥ Give appropriate credit,

¥ Provide a link to the license (https://creativecommons.org/licenses/by/4.0/)), and

¥ Indicate if (and which) changes were made with respect to the original.

Acknowledgements

Several parts of this glossary have been contributed by the following volunteers and sponsors (apart from
the numerous authors.)

¥ The definitions of about 120 terms have been donated by Gernot Starke, originally compiled for one of
his books.

¥ A number of definitions in context of system improvement and evolution was contributed by the
aim42 open source project.

Contributing

!

Contributions are welcome

In case find errors, omissions or typos, or want to contribute additional content -
please feel free to do this via one of the following ways:

1. Open an issue in our GitHub repository

2. Fork the repository and create a pull request.

3. Write an email to the authors,

Your input is highly appreciated by the authors.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 2

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/)
https://esabuch.de/
http://aim42.github.io/
https://github.com/isaqb-org/glossary/issues

Terms

A

Abstraction

The process of removing details to focus attention on aspects of greater importance. Similar in nature to
the process of generalization.

A view of an element that focuses on the information relevant to a particular purpose, ignoring additional
or other information.

A design construct as in "Building blocks should depend on abstractions rather than on implementations."

Abstractness

Metric for the source code of object oriented systems: The number of abstract types (interfaces and
abstract classes) divided by the total number of types.

Accessibility Quality Attribute

Degree to which a product or system can be used by people with the widest range of characteristics and
capabilities to achieve a specified goal in a specified context of use. Is a sub-characteristic of: usability.
Refer to ISO 25010 website.

Accountability Quality Attribute

Degree to which the actions of an entity can be traced uniquely to the entity. Is a sub-characteristic of:
security. Refer to ISO 25010 website.

Accreditation

Determination procedure and certification by an authorised accreditation body (here the iSAQB¨)
confirming that the applicant meets the organizational, technical and qualitative requirements as a training
provider.

Accreditation Body

The application for accreditation must be submitted through the accreditation body designated by the
iSAQB. The accreditation body is the contact point for all questions of the training provider during the
accreditation . It coordinates the accreditation procedure, carries out the formal assessment of the
documents submitted and organises the technical assessment in the AUDIT WORKING GROUP.

Accredited Training Provider

Training Provider with valid accreditation issued by the iSAQB¨.

ACL

Access Control Lists control authorization of a principal to access a specific entity. An ACL attached to an
entity lists principals along with their access permissions. Many file systems - among them Windows and
POSIX file systems - support ACLs to control access.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 3

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Since ACLs donÕt scale well on a large base it is common to model access control based on roles (RBAC).

Acyclic Dependencies Principle

A fundamental principle for designing the structure of software systems (also see Package Principles). It
demands that there be no cycles in the dependence graph of a system, which is also a necessity for
hierarchical decomposition .

Avoiding dependence cycles is essential for low coupling and maintainability , as all components in a
dependence cycle effectively (even if indirectly) depend on each other, which makes it hard to understand,
change or replace any part of the cycle in isolation (also see [Lilienthal-2019]).

Although Robert C. Martin ([Martin-2003]) expressed it in terms of large components of object-oriented
software, the ADP is a universal principle. It goes back (at least) to one of the origins of software
architecture, the classic 1972 paper "On the Criteria To Be Used in Decomposing Systems into Modules"
([Parnas-1972]), which concludes that hierarchical structure along with "clean" decomposition are
desirable properties of any system.

It can be argued that a dependence cycle, even before considering its various practical problems, is
logically already as flawed as a circular argument or circular definition . As a structural contradiction, a
cycle can neither be an appropriate nor meaningful model of the inherent nature and purpose of a system.
And this conceptual divergence alone virtually guarantees for (unpredictable) problems to arise, which is
exactly what a principled approach guards against.

Adaptability Quality Attribute

Degree to which a product or system can effectively and efficiently be adapted for different or evolving
hardware, software or other operational or usage environments. Is a sub-characteristic of: portability . Refer
to ISO 25010 website.

Adapter

The adapter is a design pattern that allows the interface of an existing component to be used from another
interface. It is often used to make existing components cooperate with others without modifying their
source code.

Aggregate

Aggregate is a building block of Domain-Driven Design. Aggregates are complex object structures that are
made of entities and value objects. Each aggregate has a root entity and is regarded as one unit when it
comes to changes. An aggregate ensure consistency and integrity of its contained entities with invariants.

Aggregation

A form of object composition in object-oriented programming. It differs from composition, as aggregation
does not imply ownership. When the element is destroyed, the contained elements remain intact.

Analysability Quality Attribute

Degree of effectiveness and efficiency with which it is possible to assess the impact on a product or
system of an intended change to one or more of its parts, or to diagnose a product for deficiencies or
causes of failures, or to identify parts to be modified. Is a sub-characteristic of: maintainability . Refer to
ISO 25010 website.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 4

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Functional_decomposition
https://en.wikipedia.org/wiki/Circular_reasoning
https://en.wikipedia.org/wiki/Fallacies_of_definition#Circularity
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Appropriateness

(syn: adequacy) Suitability for a particular purpose.

Appropriateness Recognizability Quality Attribute

Degree to which users can recognize whether a product or system is appropriate for their needs. Is a sub-
characteristic of: usability. Refer to ISO 25010 website.

arc42

Free and open-source template for communication and documentation of software architectures. arc42
consists of 12 (optional) parts or sections.

Architectural (Architecture) Pattern

ÒAn architectural pattern expresses a fundamental structural organization schema for software systems. It
provides a set of predefined sub-systems, specifies their responsibilities, and includes rules and guidelines
for organizing the relationships between themÓ ([Buschmann+1996], page 12). Similar to architecture style.

Examples include:

¥ Layers

¥ Pipes-and-Filter

¥ Microservices

¥ CQRS

Architectural Decision

Decision, which has an sustainable or essential effect on the architecture.

Example: Decision about database technology or technical basics of the user interface.

Following ISO/IEC/IEEE 42010 an architectural decision pertain to system concerns. However, there is
often no simple mapping between the two. A decision can affect the architecture in several ways. These
can be reflected in the architecture description (as defined in ISO/IEC/IEEE 42010).

Architectural Tactic

A technique, strategy, approach or decision helping to achieve one or several quality requirements. The
term was coined by [Bass et al. 2022].

Architecture

See Software Architecture

Architecture Description

Work product used to express an architecture (as defined in ISO/IEC/IEEE 42010).

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 5

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://arc42.org

Architecture Description Element

An architecture description element is any construct in an architecture description. architecture
description elements are the most primitive constructs discussed in ISO/IEC/IEEE 42010. All terms
defined in ISO/IEC/IEEE 42010 are a specialization of the concept of an architecture description element
(as defined in ISO/IEC/IEEE 42010).

Architecture Description Language

An architecture description language (ADL) is any form of expression for use in architecture descriptions
(as defined in ISO/IEC/IEEE 42010).

Examples are Rapide, Wright, SysML, ArchiMate and the viewpoint languages of RM-ODP [ISO 10746].

Architecture Evaluation

Quantitative or qualitative assessment of a (software or system) architecture. Determines if an
architecture can achieve its target qualities or quality attributes.

See Assessment

"
Comment (Gernot Starke) In my opinion the terms architecture analysis or architecture
assessment are more appropriate, as evaluation contains value, implying numerical
assessment or metrics, which is usually only part of what you should do in
architecture analysis.

Architecture Framework

Conventions, principles and practices for the description of architectures established within a specific
domain of application and/or community of stakeholders (as defined in ISO/IEC/IEEE 42010).

Examples are:

¥ Generalised Enterprise Reference Architecture and Methodologies (GERAM) [ISO 15704] is an
architecture framework.

¥ Reference Model of Open Distributed Processing (RM-ODP) [ISO/IEC 10746] is an architecture
framework.

Architecture Goal

(syn: Architectural quality goal, architectural quality requirement): A quality attribute that the system needs
to achieve and the quality attribute is understood to be an architectural issue.

Hence, the architecture needs to be designed in a way to fulfill this architectural goal. These goals often
have long term character in contrast to (short term) project goals.

Architecture Model

An architecture view is composed of one or more architecture models. An architecture model uses
modelling conventions appropriate to the concerns to be addressed. These conventions are specified by
the model kind governing that model. Within an architecture description, an architecture model can be a
part of more than one architecture view (as defined in ISO/IEC/IEEE 42010).

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 6

Architecture Objective

See architecture goal.

Architecture Quality Requirement

See architecture goal.

Architecture Rationale

Architecture rationale records explanation, justification or reasoning about architecture decisions that
have been made. The rationale for a decision can include the basis for a decision, alternatives and trade-
offs considered, potential consequences of the decision and citations to sources of additional information
(as defined in ISO/IEC/IEEE 42010).

Architecture Style

Description of element and relation types, together with constraints on how they can be used. Often called
architecture pattern . Examples: Pipes-and-Filter, Model-View-Controller, Layers.

"

Comment (Alexander Lorz)

Depending on who you ask, some might consider architecture styles a generalization
of architecture patterns. That is, "distributed system" is a style while "client-server,
CQRS, broker and peer-to-peer" are more specific patterns that belong to this style.
However, from a practical point of view this distinction is not essential.

Architecture View

A representation of a system from a specific perspective. Important and well-known views are:

¥ Context view

¥ Building block view

¥ Runtime view

¥ Deployment view

[Bass et al. 2022] and [Rozanski & Woods 2011] extensively discuss this concept.

Following ISO/IEC/IEEE 42010, an architecture view is a work product expressing the architecture of a
system from the perspective of specific system concerns (as defined in ISO/IEC/IEEE 42010).

Architecture Viewpoint

Work product establishing the conventions for the construction, interpretation and use of architecture
views to frame specific system concerns (as defined in ISO/IEC/IEEE 42010).

Artifact

Tangible by-product created or generated during development of software. Examples of artifacts are use
cases, all kinds of diagrams, UML models, requirements and design documents, source code, test cases,
class-files, archives.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 7

Assessment

See also Evaluation.

Gathering information about status, risks or vulnerabilities of a system. Assessment might potentially
concern all aspects (development, organization, architecture, code, etc.).

Asset

"In information security, computer security and network security an Asset is any data, device, or other
component of the environment that supports information-related activities. Assets generally include
hardware (e.g. servers and switches), software (e.g. mission critical applications and support systems)
and confidential information"

(quoted from Wikipedia)

Association

Defines a relationship between objects (in general: between components). Each association can be
described in detail by cardinalities and (role-)names.

See coupling, dependency and relationship

Asymmetric Cryptography

Asymmetric cryptography algorithms are designed that the key which is used for encryption is different
from the key used for decryption. The key for encryption is called "public-key" the key for decryption is
called "private-key". The public key can be published and used by anyone to encrypt information only
readable by the party owning the private-key for decryption. See page 17.

Asymmetric cryptography is fundamental for PKI and digital signatures.

ATAM

Architecture Tradeoff Analysis Method. Qualitative architecture evaluation method, based upon a
(hierarchical) quality tree and concrete quality scenarios. Basic idea: Compare fine-grained quality
scenarios ("quality-requirements") with the corresponding architectural approaches to identify risks and
trade-offs.

Attack Tree

Formal way to describe different approaches of an attacker to reach certain goals. The tree is usually
structured with the attack goal on top and different approaches as child nodes. Each approach is likely to
have dependencies which are again listed as child nodes. The possibility of a certain way to attack an IT-
system can be analyzed by assigning additional attributes to each node. Examples could be the estimated
costs of an attack or if an attack approach is possible or not by referencing countermeasures.

See Bruce Schneier on "Modeling security threats".

Audit Working Group:

The audit working group is responsible for the technical evaluation of training materials as well as for the
monitoring and evaluation of training courses. The members of the audit working group, authorized by the
iSAQB¨, are independent of the training provider. The result of the assessments (the respective

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 8

https://en.wikipedia.org/w/index.php?title=Asset_(computer_security)&oldid=694606042
https://www.schneier.com/academic/archives/1999/12/attack_trees.html

accreditation recommendation of the audit working group) will be communicated to the training provider
by the accreditation body.

Authentication

Authentication is the process of confirming the claim of an identity by a given entity. Usually this is done
by verifying at least one of the authentication factors which is known by the system:

¥ knowledge (e.g. password)

¥ ownership (e.g. security token)

¥ inherence (e.g. biometrics)

For a stronger authentication multiple factors can be requested or at least factors of two categories.

Authenticity Quality Attribute

Degree to which the identity of a subject or resource can be proved to be the one claimed. Is a sub-
characteristic of: security. Refer to ISO 25010 website.

Authorization

"Authorization or authorisation is the function of specifying access rights to resources related to
information security and computer security in general and to access control in particular. More formally,
"to authorize" is to define an access policy."

(quoted from Wikipedia)

Availability

One of the basic Security Goals describing a system that can provide desired information when its needed.
From a security perspective for example denial-of-service-attacks may prevent availability.

Availability Quality Attribute

Degree to which a system, product or component is operational and accessible when required for use. Is a
sub-characteristic of: reliability. Refer to ISO 25010 website.

B

Black Box

View on a building block (or component) that hides the internal structure. Blackboxes respect the
information hiding principle. They shall have clearly defined input- and output interfaces plus a precisely
formulated responsibility or objective. Optionally a blackbox defines some quality attributes, for example
timing behavior, throughput or security aspects.

Bottom-Up Approach

Direction of work (or strategy of processing) for modeling and design. Starting with something detailed or
concrete, working towards something more general or abstract.

"In a bottom-up approach the individual base elements of the system are first specified in great detail.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 9

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://en.wikipedia.org/w/index.php?title=Authorization&oldid=739777234
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

These elements are then linked together to form larger subsystems." (quote from Wikipedia)

Bounded Context

Bounded Context is principle of the strategy design of Domain-Driven Design. "A bounded context explicitly
defines the context within which a domain model for a software system applies. Ideally, it would be
preferable to have a single, unified model for all software systems in the same domain. While this is a
noble goal, in reality it typically fragments into multiple models. It is useful to recognize this fact of life and
work with it." (quote from Wikipedia)

"Multiple domain models are in play on any large project. Yet when code based on distinct models is
combined, software becomes buggy, unreliable, and difficult to understand. Communication among team
members becomes confusing. It is often unclear in what context a model should not be applied. Therefore:
Explicitly set boundaries in terms of team organization, usage within specific parts of the application, and
physical manifestations such as code bases and database schemas. Keep the model strictly consistent
within these bounds, but donÕt be distracted or confused by issues outside." (quote from Wikipedia)

Bridge

Design pattern in which an abstraction is decoupled from its implementation, so that the two can vary
independently. In case you find that incomprehensible (as most people)Ñhave a look here

Broker

An architecture pattern used to structure distributed software systems with decoupled components that
interact by (usually remote) service invocations.

A broker is responsible for coordinating communication, such as forwarding requests, as well as for
transmitting results and exceptions.

Building Block

General or abstract term for all kinds of artifacts from which software is constructed. Part of the statical
structure (Building Block View) of software architecture.

Building blocks can be hierarchically structured, they may contain other (smaller) building blocks.

Some examples of alternative (concrete) names for building blocks:
Component, module, package, namespace, class, file, program, subsystem, function, configuration, data-
definition.

Building Block View

Shows the statical structure of the system, how its source code is organized. Usually a hierarchical
manner, starting from the [context view]. Complemented by one or several [runtime views].

Business Architecture

A blueprint of the enterprise that provides a common understanding of the organization and is used to
align strategic objectives and tactical demands.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 10

https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
https://www.cs.sjsu.edu/~pearce/modules/patterns/platform/bridge/index.htm

Business Context

Shows the complete system as one blackbox within its environment from a business perspective and
includes a specification of all communication partners (users, IT-systems, etc.) with explanations of
domain specific inputs and outputs or interfaces. Note that the specific technical solutions for interacting
with external actors should usually be omitted from the business context, as they are subject to the
technical context).

See Context View.

C

C4 Model

The C4 Model for Software Architecture Documentation was developed by Simon Brown. It consists of a
hierarchical set of software architecture diagrams for context, containers, components, and code. The
hierarchy of the C4 diagrams provides different levels of abstraction, each of which is relevant to a
different audience.

CA

A Certificate Authority issues digital certificates to a given subject in a PKI. Usually there is a trust
established to this authority which results in the same trust level to the issued certificates.

An example is the widely used TLS-PKI where every browser includes the root-certificates of a defined list
of CAs. These CAs then check the identity of a given internet domain owner and digitally sign his
certificate for the use with TLS.

Capacity Quality Attribute

Degree to which the maximum limits of a product or system parameter meet requirements. Is a sub-
characteristic of: performance efficiency . Refer to ISO 25010 website.

Cardinality

Describes the quantitative rating of an association or relationship. It specifies the number of participants
(objects, instances, modules etc) of the association.

Certification Program

The iSAQB¨ CPSA¨ certification program, including its organizational components, documents (training
documents, contracts) and processes.

The copyrighted abbreviation and term CPSA¨ means Certified Professional for Software Architecture .

CIA Triad

See Security Goals

Cloud

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or service provider interaction."

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 11

https://c4model.com/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Definition quoted from NIST (National Institute of Standards and Technology).

The NIST definition contains the following five characteristics (quoted but abbreviated from the
aforementioned NIST source too):

¥ On-demand self-service: A consumer can unilaterally provision computing capabilities, such as server
time and network storage, without requiring human interaction with each service provider.

¥ Broad network access: Capabilities are available over the network and accessed through standard
mechanisms that promote use by heterogeneous client platforms.

¥ Resource pooling: The providerÕs computing resources are pooled to serve multiple consumers using
a multi-tenant model, with different physical and virtual resources dynamically assigned and
reassigned according to consumer demand. There is location independence in that the customer
generally has no control or knowledge over the exact location of the provided resources but may be
able to specify location at a higher level of abstraction (e.g., country, state, or datacenter). Examples
of resources include storage, processing, memory, and network bandwidth.

¥ Rapid elasticity: Capabilities can be elastically provisioned and released, in some cases automatically,
to scale rapidly commensurate with demand. To the consumer, the capabilities available for
provisioning often appear to be unlimited and can be appropriated in any quantity at any time.

¥ Measured service: Cloud systems automatically control and optimize resource use by leveraging a
metering capability at some level of abstraction appropriate to the type of service (e.g., storage,
processing, bandwidth, and active user accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and consumer of the utilized service.

Co-Existence Quality Attribute

Degree to which a product can perform its required functions efficiently while sharing a common
environment and resources with other products, without detrimental impact on any other product. Is a sub-
characteristic of: compatibility . Refer to ISO 25010 website.

Cohesion

The degree to which elements of a building block, component or module belong together is called
cohesion. It measures the strength of relationship between pieces of functionality within a given
component. In cohesive systems, functionality is strongly related. It is usually characterized as high
cohesion or low cohesion. Strive for high cohesion, because high cohesion often implies reusability, low
coupling and understandability.

Command

Design pattern in which an object is used to encapsulate an action. This action might be invoked or
executed at a later time.

Common Closure Principle

A fundamental principle for designing the structure of software systems (also see Package Principles). It
directly and explicitly restates the Single Responsibility Principle for larger components.

The subcomponents of a component should ideally have the exact same reasons to change. A change
request that effects one of them should effect all of them, but it should not affect anything else outside
their enclosing component.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 12

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://en.wikipedia.org/wiki/Cohesion_%28computer_science%29

Thereby, each expected change request would effect a minimal number of components. Or put another
way: Each component would be closed to a maximum number of expected change requests. The term
expected here signifies a few important implications:

1. The inherent concepts/responsibilities of a system run deeper than a surface-level description of its
behaviour.

2. The deeper concepts/responsibilities of a system are not entirely objective but can be modeled in
different ways.

3. Determining the concepts/responsibilities of a system is not just passive describing but also active
strategizing .

This principle leads to highly cohesive components. It also implies loosely coupled components because
related concepts that do change together do get bundled up in the same component. When each single
concept is expressed by a single component, there are no unnecessary couplings between components.

Common Reuse Principle

A fundamental principle for designing the structure of software systems (also see Package Principles).
The subcomponents (classes) of a component should be exactly the ones that are being (re)used
together. Or the other way around: Components that are being (re)used together should be packaged into
a larger component. This also implies that subcomponents that are not frequently used in conjunction with
the other subcomponents should not be in the respective component.

This perspective helps in deciding what belongs into a component and what doesnÕt. It aims at a system
decomposition of loosely coupled and highly cohesive components.

This obviously echoes the Single Responsibility Principle. It also echoes the Interface Segregation
Principle, as it ensures that clients arenÕt forced to depend on concepts they donÕt care about.

Compatibility Quality Attribute

Degree to which a product, system or component can exchange information with other products, systems
or components, and/or perform its required functions, while sharing the same hardware or software
environment. Is composed of the following sub-characteristics: co-existence, interoperabilty. Refer to ISO
25010 website.

Complexity

"Complexity is generally used to characterize something with many parts where those parts interact with
each other in multiple ways." (quoted from Wikipedia.)

¥ Essential complexity is the core of the problem we have to solve, and it consists of the parts of the
software that are legitimately difficult problems. Most software problems contain some complexity.

¥ Accidental complexity is all the stuff that doesnÕt necessarily relate directly to the solution, but that we
have to deal with anyway.

(quoted from Mark Needham)

Architects shall strive to reduce accidental complexity.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 13

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://codebetter.com/markneedham/2010/03/18/essential-and-accidental-complexity/

Component

See Building block. Structural element of an architecture.

Composition

Combine simpler elements (e.g. functions, data types, building blocks) to build more complicated,
powerful or more responsible ones.

In UML: When the owning element is destroyed, so are the contained elements.

Concept

Plan, principle(s) or rule(s) how to solve a specific problem.

Concepts are often cross-cutting in a sense that multiple architectural elements might be affected by a
single concept. That means that implementors of e.g. implementation units (building blocks) should
adhere to the corresponding concept.

Concepts form the basis for conceptual integrity .

Conceptual Integrity

Concepts, rules, patterns and similar solution approaches are applied in a consistent (homogeneous,
similar) way throughout the system. Similar problems are solved in similar or identical ways.

Concern

"A concern about an architecture is a requirement, an objective, a constraint, an intention, or an aspiration
a stakeholder has for that architecture." (quoted from [Rozanski & Woods 2011], chapter 8)

Following ISO/IEC/IEEE 42010 a concern is defined as (system) interest in a system relevant to one or
more of its stakeholders (as defined in ISO/IEC/IEEE 42010).

Note, a concern pertains to any influence on a system in its environment, including developmental,
technological, business, operational, organizational, political, economic, legal, regulatory, ecological and
social influences.

Concurrency

Concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-
of-order or in partial order, without affecting the final outcome. Concurrency does not necessarily mean
parallelism. (nach Wikipedia)

Confidentiality

One of the basic Security Goals describing a system to disclose and make information only available to
authorized parties.

Confidentiality Quality Attribute

Degree to which a product or system ensures that data are accessible only to those authorized to have
access. Is a sub-characteristic of: security. Refer to ISO 25010 website.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 14

https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Consistency

A consistent systems does not contain contradictions.

¥ Identical problems are solved with identical (or at least similar) approaches.

¥ Degree, to which data and their relations comply to validation rules.

¥ Clients (of a database) get identical results for identical queries (e.g. Monotonic-Read-Consistency,
Monotonic-Write-Consistency, Read-Your-Writes-Consistency etc.)

¥ With respect to behavior: Degree, to which a system behaves coherent, replicable and reasonable.

Constraint

A restriction on the degree of freedom you have in creating, designing, implementing or otherwise
providing a solution. Constraints are often global requirements, such as limited development resources or
a decision by senior management that restricts the way you plan, design, develop or operate a system.

Based upon a definition from Scott Ambler

Context (of a System)

"Defines the relationships, dependencies, and interactions between the system and its environment:
People, systems, and external entities with which it interacts." (quoted from Rozanski-Woods)

Another definition from arc42: "System scope and context - as the name suggests - delimits your system
(i.e. your scope) from all its communication partners (neighboring systems and users, i.e. the context of
your system). It thereby specifies the external interfaces." (quoted from docs.arc42.org)

Distinguish between business and technical context:

¥ The business context (formerly called logical context) shows the external relationships from a
business- or non-technical perspective. It abstracts from technical, hardware or implementation
details. Input-/Output relationships are named by their business meaning instead of their technical
properties.

¥ The technical context shows technical details, like transmission channel, technical protocol, IP-
address, bus or similar hardware details. Embedded systems, for example, often care for hardware-
related information very early in development.

Context View

Shows the complete system as one blackbox within its environment. This can be done from a business
perspective (business context) and/or from a technical or deployment perspective (technical context). The
context view (or context diagram) shows the boundary between a system and its environment, showing
the entities in its environment (its neighbors) with which it interacts.

Neighbors can either be other software, hardware (like sensors), humans, user-roles or even organizations
using the system.

See Context.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 15

https://agilemodeling.com/artifacts/constraint.htm
https://www.viewpoints-and-perspectives.info/home/viewpoints/context/
https://docs.arc42.org

Correspondence

A correspondence defines a relation between architectural description elements. Correspondences are
used to express architecture relations of interest within an architecture description (or between
architecture descriptions) (as defined in ISO/IEC/IEEE 42010).

Correspondence Rule

Correspondences can be governed by correspondence rules. Correspondence rules are used to enforce
relations within an architecture description (or between architecture descriptions) (as defined in
ISO/IEC/IEEE 42010).

Synonym: Integrity, homogeneity, conceptual integrity.

Coupling

Coupling is the kind and degree of interdependence between building blocks of software; a measure of
how closely connected two components are.

You should always aim for low coupling. Coupling is usually contrasted with cohesion. Low coupling often
correlates with high cohesion, and vice versa. Low coupling is often a sign of a well-structured system.
When combined with high cohesion, it supports understandability and maintainability.

CPSA¨

Certified Professional for Software Architecture¨ Ð the common name for different levels of certification
issued by the iSAQB. The most common known certifications are the foundation level (CPSA-F) and the
advanced level (CPSA-A).

CQRS

(command query responsibility segregation): Separate the elements manipulating (command) data from
those just reading (query). This separation enables different optimization strategies for reading and writing
data (for example, itÕs much easier to cache data thatÕs read-only than to cache data thatÕs also altered.)

ThereÕs an interesting eBook by Mark Nijhof on this subject.

Cross-Cutting Concept

See concept.

Synonym: principle, rule.

Cross-Cutting Concern

Functionality of the architecture or system that affects several elements. Examples of such concerns are
logging, transactions, security, exception handling, caching etc.

Often these concerns will be addressed in systems via concepts.

Curriculum

The learning process provided by a school (here: iSAQB¨ as the institution governing software
architecture education). It includes the content of courses (the syllabus), the methods employed, and other

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 16

https://en.wikipedia.org/wiki/Coupling_%28computer_programming%29
https://leanpub.com/cqrs

aspects, like norms and values, which relate to the way the education including certification and
examination is organized.

Cyclomatic Complexity

Quantitative measure, number of independent paths through a programÕs source code. It roughly
correlates to the number of conditional statements (if , while) in the code +1. A linear sequence of
statements without if or while has the cyclomatic complexity of 1. Many software engineers believe that
higher complexity correlates to the number of defects.

D

Decomposition

(syn: factoring) Breaking or dividing a complex system or problem into several smaller parts that are easier
to understand, implement or maintain.

Dependency

See coupling.

Dependency Injection (DI)

Instead of having your objects or a factory creating a dependency, you pass the needed dependencies to
the constructor or via property setters. You therefore make the creation of specific dependencies
somebody elseÕs problem.

Dependency Inversion Principle

High level (abstract) elements should not depend upon low level (specific) elements. "Details should
depend upon abstractions" ([Martin-2003]). One of the SOLID principles, nicely explained by Brett
Schuchert, and closely related to the SDP and SAP.

Deployment

Bring software onto its execution environment (hardware, processor etc). Put software into operation.

Deployment View

Architectural view showing the technical infrastructure where a system or artifacts will be deployed and
executed.

"This view defines the physical environment in which the system is intended to run, including the hardware
environment your system needs (e.g., processing nodes, network interconnections, and disk storage
facilities), the technical environment requirements for each node (or node type) in the system, and the
mapping of your software elements to the runtime environment that will execute them." (as defined by
Rozanski+2011)

Design Pattern

General or generic reusable solution to a commonly occurring problem within a given context in design.
Initially conceived by the famous architect Christopher Alexander, the concept of design patterns was
taken up by software engineers.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 17

https://martinfowler.com/articles/dipInTheWild.html
https://martinfowler.com/articles/dipInTheWild.html
https://www.viewpoints-and-perspectives.info/home/viewpoints/deployment/
https://en.wikipedia.org/wiki/Christopher_Alexander

In our opinion, every serious software developer should know at least some patterns from the pioneering
Gang-of-Four book by Erich Gamma ([GoF: Design-Patterns]) and his three allies.

Design Principle

Set of guidelines that helps software developers to design and implement better solutions, where "better"
could, for example, mean one or more of the following:

¥ low coupling.

¥ high cohesion.

¥ separation of concerns or adherence to the Single Responsibility Principle.

¥ adherence to the Information Hiding principle.

¥ avoid Rigidity : A system or element is difficult to change because every change potentially affects
many other elements.

¥ avoid Fragility : When elements are changed, unexpected results, defects or otherwise negative
consequences occur at other elements.

¥ avoid Immobility : An element is difficult to reuse because it cannot be disentangled from the rest of
the system.

Design Rationale

An explicit documentation of the reasons behind decisions made when designing any architectural
element.

Document

A (usually written) artifact conveying information.

Documentation

A systematically ordered collection of documents and other material of any kind that makes usage or
evaluation easier. Examples for "other material": presentation, video, audio, web page, image, etc.

Documentation Build

Automatic build process that collects artifacts into a consistent documentation.

Domain Model

The domain model is a concept of Domain-Driven Design. It provides a system of abstractions that
describes selected aspects of a domain and can be used to solve problems related to that domain.

Domain-Driven Design (DDD)

"Domain-driven design (DDD) is an approach to developing software for complex needs by deeply
connecting the implementation to an evolving model of the core business concepts."

(quoted from DDDCommunity). See [Evans-2004].

See also:

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 18

https://en.wikipedia.org/wiki/Design_Patterns
https://www.dddcommunity.org/learning-ddd/what_is_ddd/

¥ Entity

¥ Value Object

¥ Aggregate

¥ Service

¥ Factory

¥ Repository

¥ Ubiquitous Language

Drawing Tool

A tool to create drawings that can be used in architecture documentation. Example: MS Visio, OmniGraffle,
PowerPoint, etc. Drawing tools treat each drawing as a separate thing, this causes maintenance overhead
when updating an element of the architecture that is shown in several diagrams (as opposed to a
Modeling Tool).

E

Economicalness

Being economical, simple, lean or achievable with relatively low effort.

Embedded System

System embedded within a larger mechanical or electrical system. Embedded systems often have real-
time computing constraints. Typical properties of embedded systems are low power consumption, limited
memory and processing resources, small size.

Encapsulation

Encapsulation has two slightly distinct notions, and sometimes the combination thereof:

¥ restricting access to some of the objectÕs components

¥ bundling of data with the methods or functions operating on that data

Encapsulation is a mechanism for information hiding .

Enterprise IT Architecture

Synonym: Enterprise Architecture.

Structures and concepts for the IT support of an entire company. Atomic subject matters of the enterprise
architecture are single software systems also referred to as "applications".

Entity

Entity is a building block of Domain-Driven Design. An entity is a core object of a business domain with
unchangeable identity and a clearly defined lifecycle. Entities map their state to value objects and are
almost always persistent.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 19

Entropy

In information theory defined as "amount of information" a message has or "unpredictability of information
content". The entropy of a crypto system is measured by the size of the keyspace. Larger keyspaces have
an increased entropy and, if not flawed by the algorithm itself, are harder to break than smaller ones. For
secure cryptographic operations it is mandatory to not only use random values as input, they should have
also a high entropy. The creation of high entropy on a computer system is non-trivial and can affect the
performance of a system.

See [Schneier, Bruce] and Whitewood Inc. on "Understanding and Managing Entropy" or SANS
"Randomness and Entropy - An Introduction".

Environment

(System) Context determining the setting and circumstances of all influences upon a system (as defined
in ISO/IEC/IEEE 42010).

Note, the environment of a system includes developmental, technological, business, operational,
organizational, political, economic, legal, regulatory, ecological and social influences.

F

Facade

Structural design pattern. A Facade offers a simplified interface to a complex or complicated building
block (the provider) without any modifications to the provider.

Factory

(Design pattern) In class-based or object-oriented programming, the factory method pattern is a creational
design pattern that uses factory methods or factory components for creating objects, without having to
specify the exact class of the object that will be created.

In Domain-Driven Design: A factory encapsulates the creation of aggregates, entities, and value objects.
Factories work exclusively in the domain and have no access to technical building blocks (e.g. a
database).

Fault Tolerance Quality Attribute

Degree to which a system, product or component operates as intended despite the presence of hardware
or software faults. Is a sub-characteristic of: reliability. Refer to ISO 25010 website.

Filter

Part of the pipe-and-filter architectural style that creates or transforms data. Filters are typically executed
independently of other filters.

Fitness Function

"An architectural fitness function provides an objective integrity assessment of some architectural
characteristics." ([Ford+2017]).

A fitness function is derived from manual evaluations and automated tests and shows to which extent
architectural or quality requirements are met.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 20

https://www.blackhat.com/docs/us-15/materials/us-15-Potter-Understanding-And-Managing-Entropy-Usage-wp.pdf
https://www.sans.org/white-papers/874/
https://www.sans.org/white-papers/874/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Function Signature

(Synonym: type or method signature) defines input and output of functions or methods.

A signature can include:

¥ parameters and their types

¥ return value and type

¥ exception thrown or errors raised

Functional Appropriateness Quality Attribute

Degree to which the functions facilitate the accomplishment of specified tasks and objectives. Is a sub-
characteristic of: functional suitability . Refer to ISO 25010 website.

Functional Completeness Quality Attribute

Degree to which the set of functions covers all the specified tasks and user objectives. Is a sub-
characteristic of: functional suitability . Refer to ISO 25010 website.

Functional Correctness Quality Attribute

Degree to which a product or system provides the correct results with the needed degree of precision. Is a
sub-characteristic of: functional suitability . Refer to ISO 25010 website.

Functional Suitability Quality Attribute

Degree to which a product or system provides functions that meet stated and implied needs when used
under specified conditions. Is composed of the following sub-characteristics: functional completeness ,
functional correctness , functional appropriateness . Refer to ISO 25010 website.

Fundamental Modeling Concepts (FMC)

Fundamental Modeling Concepts is a graphical notation for modeling and documenting software systems.
From their website:
"FMC provide a framework for the comprehensive description of software-intensive systems. It is based
on a precise terminology and supported by a graphical notation which can be easily understood".

G

Gateway

A (design or architecture) pattern: An element of that encapsulates access to a (usually external) system
or resource. See also wrapper, adapter.

Global Analysis

Systematic approach to achieve desired quality attributes. Developed and documented by Christine
Hofmeister (Siemens Corporate Research). Global analysis is described in [Hofmeister+2000] .

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 21

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://fmc-modeling.org/

H

Heterogeneous Architectural Style

See hybrid architecture style.

Heuristic

Informal rule, rule-of-thumb. Any way of problem-solving not guaranteed to be optimal, but somehow
sufficient. Examples from Object-Oriented Design or User Interface Design.

Hybrid Architecture Style

Combination of two or more existing architecture styles or patterns. For example, an MVC construct
embedded in a layer structure.

I

IEEE-1471

Standard Recommended Practice for Architectural Description of Software-Intensive Systems, defined as
ISO/IEC 42010:2007. Defines a (abstract) framework for the description of software architectures.

Incremental Development

See iterative and incremental development.

Information Hiding

A fundamental principle in software design: Keep those design or implementation decisions hidden that
are likely to change, thus protecting other parts of the system from modification if these decisions or
implementations are changed. Is one important attributes of blackboxes. Separates interface from
implementation.

The term encapsulation is often used interchangeably with information hiding.

Installability Quality Attribute

Degree of effectiveness and efficiency with which a product or system can be successfully installed
and/or uninstalled in a specified environment. Is a sub-characteristic of: portability . Refer to ISO 25010
website.

Integrity

Various meanings:

One of the basic security goals which means maintaining and assuring accuracy and completeness of
data. Usually this is achieved by the usage of cryptographic algorithms to create a digital signature.

Data or behavioral integrity:

¥ Degree to which clients (of a database) get identical results for identical queries (e.g. Monotonic-
Read-Consistency, Monotonic-Write-Consistency, Read-Your-Writes-Consistency etc.)

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 22

http://www.vincehuston.org/ood/oo_design_heuristics.html
https://www.nngroup.com/articles/ten-usability-heuristics/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

¥ Degree, to which a system behaves coherent, replicable and reasonable.

See also consistency.

Integrity Quality Attribute

Degree to which a system, product or component prevents unauthorized access to, or modification of,
computer programs or data. Is a sub-characteristic of: security. Refer to ISO 25010 website.

Interface

Multiple meanings, depending on context:

1. Boundary across which two building blocks interact or communicate with each other.

2. Design construct that provides an abstraction of the behavior of concrete components, declares
possible interactions with these components and constraints for these interactions.

An example for the second meaning is the programming language construct interface from the object-
oriented language Java(tm):

/* File name : Animal.java */
interface Animal {
Ê public void eat();
Ê public void move();
}

/* File name : Horse.java */
public class Horse implements Animal {

Ê public void eat() {
Ê System.out.println("Horse eats");
Ê }

Ê public void move() {
Ê System.out.println("Horse moves");
Ê }
}

Interface Segregation Principle (ISP)

Building blocks (classes, components) should not be forced to depend on methods they donÕt use. ISP
splits larger interfaces into smaller and more (client) specific ones so that clients will only need to know
about methods that they actually use.

Interoperability Quality Attribute

Degree to which two or more systems, products or components can exchange information and use the
information that has been exchanged. Is a sub-characteristic of: compatibility . Refer to ISO 25010 website.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 23

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

iSAQB¨

international Software Architecture Qualification Board Ð an internationally active organization fostering
the development of software architecture education. See also the discussion in the appendix.

ISO 25010

Standards to describe (and evaluate) software product quality. "The quality model determines which
quality characteristics will be taken into account when evaluating the properties of a software product."
(quote from the ISO website)

For a list of quality attributes defined by the ISO 25010 standard, refer to [ISO-25010]

ISO 9126

(Deprecated) standard to describe (and evaluate) software product quality. Has been superseded by ISO
25010.

Iterative and Incremental Development

Combination of iterative and incremental approaches for software development. These are essential parts
of the various agile development approaches, e.g. Scrum and XP.

Iterative Development

"Development approach that cycles through development phases, from gathering requirements to
delivering functionality in a working release." (quoted from c2-wiki)

Such cycles are repeated to improve either functionality, quality or both.

Contrast to the Waterfall Development.

J

K

Kerckhoffs' Principle

One of the six cryptographic axioms described 1883 in an article "La cryptographie militaire" by the Dutch
cryptographer and linguist Auguste Kerckhoffs. This axiom is still relevant today and therefore referred to
as "Kerckhoffs' Principle".

It describes that a cryptographic method must not need to be kept secret in order to achieve the security
of the encrypted messages.

"The enemy knows the system" is another expression coined by the mathematician Claude Shannon as
ShannonÕs Maxim.

See Bruce Schneiers Crypto-Gram, May 15, 2002

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 24

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://wiki.c2.com/?IterativeDevelopment
https://www.schneier.com/crypto-gram/archives/2002/0515.html

L

Latency

Latency is the time delay between the cause and the effect of some change in a system.

In computer networks, latency describes the time it takes for an amount of data (packet) to get from one
specific location to another.

In interactive systems, latency is the time interval between some input to the system and the audio-visual
response. Often a delay exists, often caused by network delays.

Layer

Grouping of building blocks or components that (together) offer a cohesive set of services to other layers.
Layers are related to each other by the ordered relation allowed to use.

Learnability Quality Attribute

Degree to which a product or system can be used by specified users to achieve specified goals of learning
to use the product or system with effectiveness, efficiency, freedom from risk and satisfaction in a
specified context of use. Is a sub-characteristic of: usability. Refer to ISO 25010 website.

Liskov Substitution Principle

Refers to object-oriented programming: If you use inheritance, do it right: Instances of derived types
(subclasses) must be completely substitutable for their base types. If code uses a base class, these
references can be replaced with any instance of a derived class without affecting the functionality of that
code.

M

Maintainability Quality Attribute

Degree of effectiveness and efficiency with which a product or system can be modified to improve it,
correct it or adapt it to changes in environment, and in requirements. Is composed of the following sub-
characteristics: modularity , reusability, analysability, modifiability , testability . Refer to ISO 25010 website.

Maturity Quality Attribute

Degree to which a system, product or component meets needs for reliability under normal operation. Is a
sub-characteristic of: reliability. Refer to ISO 25010 website.

MFA

For Multi-Factor-Authentication see Authentication .

Microservice

An architectural style, proposing to divide large systems into small units. "Microservices have to be
implemented as virtual machines, as more light-weight alternatives such as Docker containers or as
individual processes. Thereby they can easily be brought into production individually." (quoted from the
(free) LeanPub booklet on Microservices by Eberhard Wolff)

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 25

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://leanpub.com/microservices-primer
https://microservices-book.com

Model Driven Architecture (MDA)

Model Driven Architecture (MDA) is an OMG-Standard for model based software development. Definition:
"An approach to IT system specification that separates the specification of functionality from the
specification of the implementation of that functionality on a specific technology platform."

Model Kind

Conventions for a type of modeling (as defined in ISO/IEC/IEEE 42010).

Note, examples of model kinds include data flow diagrams, class diagrams, Petri nets, balance sheets,
organization charts and state transition models.

Model-Driven Software Development (MDSD)

The underlying idea is to generate code from more abstract models of requirements or the domain.

Model-View-Controller

Architecture pattern, often used to implement user interfaces. It divides a system into three interconnected
parts (model, view and controller) to separate the following responsibilities:

¥ Model manages data and logic of the system. The "truth" that will be shown or displayed by one or
many views. Model does not know (depend on) its views.

¥ View can be any number of (arbitrary) output representation of (model) information. Multiple views of
the same model are possible.

¥ Controller accepts (user) input and converts those to commands for the model or view.

Modeling Tool

A tool that creates models (e.g. UML or BPMN models). Can be used to create consistent diagrams for
documentation because it has the advantage that each model element exists only once but can be
consistently displayed in many diagrams (as opposed to a mere Drawing Tool).

Modifiability Quality Attribute

Degree to which a product or system can be effectively and efficiently modified without introducing
defects or degrading existing product quality. Is a sub-characteristic of: maintainability . Refer to ISO 25010
website.

Modular Programming

"Software design technique that separates the functionality of a program into independent,
interchangeable modules, so that each module contains everything necessary to execute only one aspect
of the desired functionality.

Modules have interfaces expressing the elements provided and required by the module. The elements
defined in the interface are detectable by other modules." (quoted from Wikipedia)

Modularity Quality Attribute

Degree to which a system or computer program is composed of discrete components such that a change
to one component has minimal impact on other components. Is a sub-characteristic of: maintainability .

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 26

https://www.omg.org/mda/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://en.wikipedia.org/wiki/Modular_programming

Refer to ISO 25010 website.

Module

(see also Modular programming)

1. structural element or building block, usually regarded as a black box with a clearly defined
responsibility. It encapsulates data and code and provides public interfaces, so clients can access its
functionality. This meaning has first been described in a groundbreaking and fundamental paper from
David L. Parnas: On the Criteria to be Used in Decomposing Software into Modules

2. In several programming languages, module is a construct for aggregating smaller programming units,
e.g. in Python. In other languages (like Java), modules are called packages.

3. The CPSA¨-Advanced Level is currently divided into several modules, which can be learned or taught
separately and in any order. The exact relationships between these modules and the contents of these
modules are defined in the respective curricula.

N

Node (in UML)

A processing resource (execution environment, processor, machine, virtual machine, application server)
where artifacts can be deployed and executed.

Node (Node.js)

In modern web development: Short form for the open-source JavaScript runtime Node.js¨ , which is built
on ChromeÕs V8 JavaScript engine. Node.js is famous for its an event-driven, non-blocking I/O model and
its vast ecosystem of supporting libraries.

Non Functional Requirement (NFR)

Requirements that constrain the solution. Nonfunctional requirements are also known as quality attribute
requirements or quality requirements. The term NFR is actually misleading, as many of the attributes
involved directly relate to specific system functions (so modern requirements engineering likes to call
these things required constraints).

Non-repudiation Quality Attribute

Degree to which actions or events can be proven to have taken place, so that the events or actions cannot
be repudiated later. Is a sub-characteristic of: security. Refer to ISO 25010 website.

Notation

A system of marks, signs, figures, or characters that is used to represent information. Examples: prose,
table, bullet point list, numbered list, UML, BPMN.

O

Observer

(Design pattern) "É in which an object, called the subject, maintains a list of its dependents, called
observers, and notifies them automatically of any state changes, usually by calling one of their methods."

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 27

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
https://nodejs.org/en/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

(quoted from Wikipedia)

The Observer pattern is a key pattern to complement the model-view-controller (MVC) architectural
pattern.

Open-Close-Principle (OCP)

"Software entities (classes, modules, functions, etc.) should be open for extension, but closed for
modification" (Bertrand Meyer, 1998). In plain words: To add functionality (extension) to a system, you
should not need to modify existing code. Part of Robert MartinÕs "SOLID" principles for object-oriented
systems. Can be implemented in object-oriented languages by interface inheritance, in a more general way
as plugins.

Operability Quality Attribute

Degree to which a product or system has attributes that make it easy to operate and control. Is a sub-
characteristic of: usability. Refer to ISO 25010 website.

OWASP

The Open Web Application Security Project is a worldwide non-profit online organization founded 2001 for
improving the security of software. It is a rich source for information and best practices in the field of web
security. See https://www.owasp.org/ .

The OWASP-Top-10 is a frequently referenced list of attack categories based on the projects data survey.

P

Package Principles

Fundamental principles for designing the structure of software systems ([Martin-2003]):

¥ Reuse/Release Equivalence Principle (REP)

¥ Common Reuse Principle (CRP)

¥ Common Closure Principle (CCP)

¥ Acyclic Dependencies Principle (ADP)

¥ Stable Dependencies Principle (SDP)

¥ Stable Abstractions Principle (SAP)

Robert C. Martin, who coined the "SOLID" acronym, also introduced the package principles) and frequently
reiterated both in conjunction. Whereas the SOLID principles target the level of classes, the package
principles target the level of larger components that contain multiple classes and might get deployed
independently.

Package and SOLID principles share the explicit goal of keeping software maintainable and avoiding the
symptoms of degraded design: rigidity, fragility, immobility, and viscosity.

While Martin expressed the Package Principles in terms of large-scale components, they apply at other
scales as well. Their core are universal principles like low coupling, high cohesion, single responsibility,
hierarchical (acyclic) decomposition, and the insight that meaningful dependencies go from
specific/unstable concepts to more abstract/stable ones (which echoes the DIP).

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 28

https://en.wikipedia.org/wiki/Observer_pattern
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.owasp.org/
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Pattern

A reusable or repeatable solution to a common problem in software design or
architecture.

See architecture pattern or design pattern.

Perfect Forward Secrecy

Property of a cryptographic protocol were an attacker canÕt gain any information about short-term session
keys by compromising long-term keys.

Examples for protocols with perfect forward secrecy are TLS and OTR. If this feature is enabled for TLS
and an attacker gains access to a servers private key, previously recorded communication sessions can
still not be decrypted.

Performance Efficiency Quality Attribute

Performance relative to the amount of resources used under stated conditions.

Resources can include other software products, the software and hardware configuration of the system,
and materials (e.g. print paper, storage media).

Is composed of the following sub-characteristics: time behaviour, resource utilization , capacity.

Refer to ISO 25010 website.

Perspective

A perspective is used to consider a set of related quality properties and concerns of a system.

Architects apply perspectives iteratively to the systemÕs architectural views in order to assess the effects
of architectural design decisions across multiple viewpoints and architectural views.

[Rozanski & Woods 2011] associates with the term perspective also activities, tactics, and guidelines that
must be considered if a system should provide a set of related quality properties and suggests the
following perspectives:

¥ Accessibility

¥ Availability and Resilience

¥ Development Resource

¥ Evolution

¥ Internationalization

¥ Location

¥ Performance and Scalability

¥ Regulation

¥ Security

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 29

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

¥ Usability

Pikachu

A yellowish mouse-like character from the (quite famous) Pokémon world. Actually, you donÕt need to
know that. But it does not hurt either - and you might impress your kids with this knowledgeÉ

Pipe

Connector in the pipes-and-filters architectural style that transfers streams or chunks of data from the
output of one filter to the input of another filter without modifying values or order of data.

PKI

Short for Public-Key-Infrastructure . A concept of managing digital certificates usually involving
asymmetric cryptography . The term "public" refers most of the time to the used type of cryptographic key
and not necessarily to infrastructure open to a public audience. To prevent semantic confusion the terms
"open PKI" or "closed PKI" can be used, see [Anderson-2008] Chapter 21.4.5.7 PKI, page 672.

PKI is usually based on a CA or a Web-of-Trust.

Port

UML construct, used in component diagrams. An interface, defining a point of interaction of a component
with its environment.

Portability Quality Attribute

Degree of effectiveness and efficiency with which a system, product or component can be transferred
from one hardware, software or other operational or usage environment to another. Is composed of the
following sub-characteristics: adaptability , installability , replaceability. Refer to ISO 25010 website.

POSA

Pattern-oriented Software Architecture. Series of books on software architecture patterns.

Principal

Principals in a security context are entities which have been authenticated and can be assigned
permissions to. A principal can be a user but for example also other services or a process running on a
system. The term is used in the Java environment and throughout different authentication protocols (see
GSSAPI RFC2744 or Kerberos RFC4121).

Proxy

(Design pattern) "A wrapper or agent object that is being called by the client to access the real serving
object behind the scenes. Use of the proxy can simply be forwarding to the real object, or can provide
additional logic. In the proxy extra functionality can be provided, for example caching when operations on
the real object are resource intensive, or checking preconditions before operations on the real object are
invoked. For the client, usage of a proxy object is similar to using the real object, because both implement
the same interface." (quoted from Wikipedia)

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 30

https://simple.wikipedia.org/wiki/Pikachu
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://docs.oracle.com/javase/8/docs/api/java/security/Principal.html
https://www.rfc-editor.org/rfc/rfc2744
https://www.rfc-editor.org/rfc/rfc4121
https://en.wikipedia.org/wiki/Proxy_pattern

Pseudo-Randomness

Often used in conjunction with pseudo-random-number-generators. Gathering randomness with a high
entropy is resource intensive and usually not required by many applications, cryptography left aside. To
address this issue pseudo-random-generators are initialized with a seed of data and create random values
based on this seed. The data will be generated by random, but will always be the same if the generator is
initialized with an identical seed. This is called pseudo-randomness and is less performance intensive.

Q

Qualitative Evaluation

Finding risks concerning the desired quality attributes of a system. Analyzing or assessing if a system or
its architecture can meet the desired or required quality goals.

Instead of calculating or measuring certain characteristics of systems or architectures, qualitative
evaluation is concerned with risks, trade-offs and sensitivity points.

See also assessment.

Quality

See software quality and quality attributes .

Quality Attribute

Software quality is the degree to which a system possesses the desired combination of attributes (see:
software quality).

The Standard ISO-25010 defines the following quality attributes:

¥ Functional suitability

! Functional completeness

! Functional correctness

! Functional appropriateness

¥ Performance efficiency

! Time behaviour

! Resource utilization

! Capacity

¥ Compatibility

! Co-existence

! Interoperability

¥ Usability

! Appropriateness recognizability

! Learnability

! Operability

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 31

! User error protection

! User interface aesthetics

! Accessibility

¥ Reliability

! Availability

! Fault tolerance

! Recoverability

¥ Security

! Confidentiality

! Integrity

! Non-repudiation

! Accountability

! Authenticity

¥ Maintainability

! Modularity

! Reusability

! Analysability

! Modifiability

! Testability

¥ Portability

! Adaptability

! Installability

! Replaceability

It might be helpful to distinguish between the following types of quality attributes:

¥ runtime quality attributes (which can be observed at execution time of the system),

¥ non-runtime quality attributes (which cannot be observed as the system executes) and

¥ business quality attributes (cost, schedule, marketability, appropriateness for organization)

Examples of runtime quality attributes are functional suitability, performance efficiency, security, reliability,
usability and interoperability.

Examples of non-runtime quality attributes are modifiability, portability, understandability and testability.

Quality Characteristic

synonym: quality attribute .

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 32

Quality Model

(from ISO 25010) A model that defines quality characteristics that relate to static properties of software
and dynamic properties of the computer system and software products. The quality model provides
consistent terminology for specifying, measuring and evaluating system and software product quality.

The scope of application of the quality models includes supporting specification and evaluation of
software and software-intensive computer systems from different perspectives by those associated with
their acquisition, requirements, development, use, evaluation, support, maintenance, quality assurance and
control, and audit.

"

Comment (Gernot Starke)

A quality model (like ISO-25010) only provides a taxonomy of terms, but does not
provide any means to specify or evaluate quality. I consent to the phrase above
"consistent terminology", but strongly object to "measuring and evaluating". For
measuring and evaluating you definitely need additional tools and/or methods, the
pure model does not help.

Quality Requirement

Characteristic or attribute of a component of a system. Examples include runtime performance, safety,
security, reliability or maintainability. See also software quality .

Quality Tree

(syn: quality attribute utility tree). A hierarchical model to describe product quality: The root "quality" is
hierarchically refined in areas or topics, which itself are refined again. Quality scenarios form the leaves of
this tree.

¥ Standards for product quality, like ISO 25010, propose generic quality trees.

¥ The quality of a specific system can be described by a specific quality tree (see the example below).

Figure 1. Sample Quality Tree

Quantitative Evaluation

(syn: quantative analysis): Measure or count values of software artifacts, e.g. coupling, cyclomatic
complexity, size, test coverage. Metrics like these can help to identify critical parts or elements of

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 33

systems.

R

Randomness

See Entropy or Pseudo-Randomness.

Rationale

Explanation of the reasoning or arguments that lie behind an architecture decision.

RBAC (Role Based Access Control)

A role is a fixed set of permissions usually assigned to a group of principals. This allows a Role-Based-
Access-Control usually to be implemented more efficient than an ACL based system and makes for
example deputy arrangements possible.

Recoverability Quality Attribute

Degree to which, in the event of an interruption or a failure, a product or system can recover the data
directly affected and re-establish the desired state of the system. Is a sub-characteristic of: reliability.
Refer to ISO 25010 website.

Redesign

The alteration of software units in such a way that they fulfill a similar purpose as before, but in a different
manner and possibly by different means. Often mistakenly called refactoring.

Refactoring

A term denoting the improvement of software units by changing their internal structure without changing
the behavior. (see ÒRefactoring is the process of changing a software system in such a way that it does
not alter the external behavior of the code yet improves the internal structure.Ó Ð Refactoring, Martin
Fowler, 1999) Not to be confused with redesign.

Registry

"A well-known object that other objects can use to find common objects and services." (quoted from
PoEAA). Often implemented as a singleton (also a well-known design pattern).

Relationship

Generic term denoting some kind of dependency between elements of an architecture. Different types of
relationship are used within architectures, e.g. call, notification, ownership, containment, creation or
inheritance.

Reliability Quality Attribute

Degree to which a system, product or component performs specified functions under specified conditions
for a specified period of time. Is composed of the following sub-characteristics: maturity , availability, fault
tolerance, recoverability. Refer to ISO 25010 website.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 34

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://martinfowler.com/eaaCatalog/registry.html
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Replaceability Quality Attribute

Degree to which a product can replace another specified software product for the same purpose in the
same environment. Is a sub-characteristic of: portability . Refer to ISO 25010 website.

Repository

In architecture documentation: A place where artifacts are stored before an automatic build process
collects them into one consistent document.

In domain-driven design: Repository is a building block of domain-driven design. A repository hides
technical details of the infrastructure layer to the domain layer. Repositories return entities that are
persisted in the database.

Resource Utilization Quality Attribute

Degree to which the amounts and types of resources used by a product or system, when performing its
functions, meet requirements. Is a sub-characteristic of: performance efficiency . Refer to ISO 25010
website.

Reusability Quality Attribute

Degree to which an asset can be used in more than one system, or in building other assets. Is a sub-
characteristic of: maintainability . Refer to ISO 25010 website.

Reuse/Release Equivalence Principle

A fundamental principle for designing the structure of software systems (also see package principles). It
demands that large components are "released" and under version control, in particular if the system uses
them from multiple points. Even if we donÕt release them publicly, we should extract such components
from the system and provide them through an external dependency manager with proper version control.

The REP contains two different insights:

1. On the large scale, modularity and low coupling require more than type separation.

2. Reusability of components (even if all "reuse" is internal) translates to overall maintainability .

Risk

Simply said, a risk is the possibility that a problem occurs. A risk involves uncertainty about the effects,
consequences or implications of an activity or decision, usually with a negative connotation concerning a
certain value (such as health, money, or qualities of a system like availability or security).

To quantify a risk the likelihood of occurrence is multiplied by the potential value which is usually a loss Ð
otherwise the risk would be a chance which given the uncertainty might be a potential outcome for some
risks.

RM/ODP

The Reference Model for Open Distributed Processing is an (abstract) metamodel for documentation of
information systems. Defined in ISO/IEC 10746.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 35

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://en.wikipedia.org/wiki/RM-ODP

Round-trip Engineering

"Concept of being able to make any kind of change to a model as well as to the code generated from that
model. The changes always propagate bidirectional and both artifacts are always consistent." (quoted
from Wikipedia)

"
Comment (Gernot Starke)

In my personal opinion, it does not work in practical situations, only in hello-world-like
scenarios, as the inverse abstraction (from low-level sourcecode to higher-level
architectural elements) usually involves design-decisions and cannot realistically be
automated.

"
Comment (Matthias Bohlen)

Recently I have seen code that originated from DDD where reverse engineering did
indeed work.

Ruby

A wonderful programming language.

Runtime View

Shows the cooperation or collaboration of building blocks (respectively their instances) at runtime in
concrete scenarios. Should refer to elements of the Building Block View. Could for example (but doesnÕt
need to) be expressed in UML sequence or activity diagrams.

S

S.O.L.I.D. principles

SOLID (single responsibility, open-closed, Liskov substitution, interface segregation and dependency
inversion) is an acronym for some principles (named by Robert C. Martin) to improve object-oriented
programming and design. The principles make it more likely that a developer will write code that is easy to
maintain and extend over time.

For some additional sources, see [SOLID-principles].

Scenario

Quality scenarios document required quality attributes. They "É are brief narratives of expected or
anticipated use of a system from both development and end-user viewpoints." ([Kazman+1996]) Thus,
they help to describe required or desired qualities of a system in pragmatic and informal manner, yet
making the abstract notion of ÒqualityÓ concrete and tangible.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 36

https://en.wikipedia.org/wiki/Model-driven_software_development
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Figure 2. Generic form of (Quality) scenario

¥ Event/stimulus: Any condition or event arriving at the system

¥ System (or part of the system) is stimulated by the event.

¥ Response: The activity undertaken after the arrival of the stimulus.

¥ Metric (response measure): The response should be measurable in some fashion.

Usually scenarios are differentiated into:

¥ Usage scenarios (application scenarios)

¥ Change scenarios (modification or growth scenarios)

¥ Failure scenarios (boundary, stress, or exploratory scenarios)

SDL

A Secure-Development-Lifecycle is a companies usual software development process with additional
practices of engineering secure software. This involves for example code reviews, architectural risk
analyses, blackbox/whitebox and penetration testing and many more additions. The whole lifecycle of an
application should be covered by the SDL, beginning with the first requirements engineering tasks and
ending with feedback from operating the released software by fixing security issues.

See [McGraw-2006], page 239.

Security Goals

The goals are the key point of information security. They are a basic set of information attributes which
can be fulfilled or not depending on a systems architecture and processes.

The most common agreed set of security goals is the so-called "CIA triad":

¥ Confidentiality

¥ Integrity

¥ Availability

The "Reference Model of Information Assurance and Security" (RMIAS) extends this list by Accountability,
Auditability, Authenticity/Trustworthiness, Non-repudiation and Privacy.

These are typical examples for non-functional requirements related to security.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 37

See [Anderson-2008], page 11 or [RMIAS-2013].

Security Quality Attribute

Degree to which a product or system protects information and data so that persons or other products or
systems have the degree of data access appropriate to their types and levels of authorization. Is
composed of the following sub-characteristics: confidentiality , integrity, non-repudiation, accountability ,
authenticity . Refer to ISO 25010 website.

Self Contained System (SCS)

An architectural style, similar to microservices. To quote from the site scs-architecture.org:

"The Self-contained System (SCS) approach is an architecture that focuses on a separation of the
functionality into many independent systems, making the complete system a collaboration of many
smaller software systems. This avoids the problem of large monoliths that grow constantly and eventually
become unmaintainable"

Sensitivity Point

(in qualitative evaluation like ATAM): Element of the architecture or system influencing several quality
attributes. For example, if one component is responsible for both runtime performance and robustness,
that component is a sensitivity point.

Casually said, if you mess up a sensitivity point, you will most often have more than one problem.

Separation of Concerns (SoC)

Any element of an architecture should have exclusivity and singularity of responsibility and purpose: No
element should share the responsibilities of another element or contain unrelated responsibilities.

Another definition is "breaking down a system into elements that overlap as little as possible."

Famous Edgar Dijkstra said in 1974: ÒSeparation of concerns É even if not perfectly possible, is the only
available technique for effective ordering of oneÕs thoughtsÓ.

Similar to the Single Responsibility Principle.

Sequence Diagram

Type of diagram to illustrate how elements of an architecture interact to achieve a certain scenario. It
shows the sequence (flow) of messages between elements. As parallel vertical lines it shows the lifespan
of objects or components, horizontal lines depict interactions between these components. See the
following example.

iSAQB¨ Glossary of Software Architecture Terminology

© iSAQB¨ e.V. 2022.1-EN-20221216 38

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://scs-architecture.org/

